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Pattern formation in Dictyostelium via the dynamics of cooperative biological entities

David A. Kessler
Department of Physics, Bar-Ilan University, Ramat-Gan, Israel

Herbert Levine
Department of Physics and Institute for Nonlinear Science, University of California, San Diego, La Jolla, California 92093-0402
(Received 26 April 1993)

The cellular slime mold Dictyostelium discoideum exhibits a variety of spatial patterns as it aggregates
to form a multicellular slug. These patterns arise via the interaction of the aggregating amoebae, either
via contact or as mediated by chemical signals involving cyclic adenosine monophosphate (AMP). We
model this system as a set of reaction-diffusion equations coupled to dynamical biological entities (bions),
each of which is endowed with signal receptors and response rules. Simulations of our model reveal a
close correspondence with the observed structures. Also, the general framework we propose should be
suitable for modeling other biological pattern-forming processes.

PACS number(s): 87.22.—q, 82.20.Mj, 05.70.Ln

Many important examples of biological pattern forma-
tion occur via the interaction of individual cells to create
multicellular structures. Cells can interact via direct con-
tact, via elastic forces mediated by an extracellular ma-
trix (or substratum), or via chemical signals. Processes of
this class include early embryonic development [1], bac-
terial colony dynamics [2], and the topic to be studied
here, aggregation of amoebae in Dictyostelium [3].

The aggregation of Dictyostelium discoideum has been
extensively studied over the past years as an experimen-
tally accessible example of cell interaction and cell
differentiation [4—6]. Roughly, colonies of 10*~10° indi-
vidual amoebae transit to a common point, under the
influence of the signaling by an aggregation center. This
signal is the organic chemical cyclic adenosine mono-
phosphate (AMP), which binds to a cell surface receptor
[7] and causes the cell to both move and relay the “mes-
sage.” Although some of the detailed biochemistry of the
single-cell transduction pathways is not understood [8],
enough of the basic features are sufficiently clear so as to
enable us to formulate quantitatively testable models of
the many-cell dynamics.

Before proceeding to our approach to this specific ex-
ample of biological pattern formation, we would like to
explain the general framework which has guided our
thinking. Individual cells are extremely complex ‘“‘com-
puting” elements; they take in a vast variety of signals
from the external world and call into play sophisticated
biochemical machinery to respond, both chemically and
mechanically. Our approach is to simplify the dynamics
at the single cell stage as much as (but not more than) is
possible. Specifically, we replace the cell by a simple ele-
ment (a “bion”) which can measure concentrations and
concentration gradients, change internal states, sense the
presence of nearby bions, and move [9]. The goal of this
type of model is the correlation of the complexity of the
pattern with the complexity of the individual element;
more directly, we want to learn how much of the final
structure is due to simple physics and chemistry and how
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much is due to biological sophistication. While we focus
in this paper exclusively on the amoebae aggregation sys-
tem, we believe that this way of simulating biological pat-
tern formation will be of more general use.

The first stage of our Dictyostelium model consists of
the signaling dynamics. It is well established [7,10] that
the cyclic AMP cell-receptor system falls into the general
class of excitable chemical dynamics [11]. These are sys-
tems which will propagate nonlinear waves in response to
an above-threshold perturbation. In this case, the wave is
sustained by each cell binding an above-threshold cAMP
concentration, turning on a cAMP production and excre-
tion facility, and then relaxating back to the unexcited
state over a finite refractory period. Typical numbers for
this signaling system are wave speeds of 300 pum/min,
with cAMP concentration oscillating from 107 3M to
107M.

To mimic this behavior, we place bions randomly on a
two-dimensional (2D) square lattice with density p; typi-
cally p should be 5-20 %, if we interpret our density as
equal to the relative amount of intracellular to total area
in an aggregating colony. In addition, cyclic AMP con-
centration ¢ is taken to obey a (discretized) diffusion
equation

%zﬁvzc —I'c¢ +(sources) , (1)

where we have normalized the diffusion constant to a?
(the square of the lattice size); the decay is due to the de-
gradation of cAMP by phosphodiesterase, here assumed
to be at a fixed uniform concentration.

Each bion has an internal state representing the avail-
ability of cAMP receptor sites. For the signaling piece of
the dynamics, the bion remains in ‘‘state’ O until it
detects a concentration at its location greater than c, a
fixed threshold. Once ¢ >cr, the bion becomes excited
(state 1) and emits an amount Ac of cAMP over 7 time
units. After time 7, the state progresses to quiescent
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(state 2) and the bion counts until ¢z time units before it
reverts to state 0. Until it reverts, it is immune to further
excitation.

Simulations of these dynamics reveal the typical
behavior of an excitable system. For example, in Fig. 1,
we see a steady-state rotating spiral wave for p=0.2,
Ac/cy=300,T"=0.5, 7=2, and tz =20. One can similar-
ly find target patterns as the response to a periodic
“pacemaker” at the origin.

One important and realistic element of our first stage
model is the fact that signals will only propagate for high
enough “excitability”’; in our case, this translates to a
minimum density p necessary to sustain the signal relay
network. To get an analytic handle on this phenomenon,
we use a simple mean-field theory and replace the bion
density p with release amount Ac by an averaged system
with density 1 and release pAc. A planar pulse solution
to (1) can be represented by

k_z
c=cre ~, z>0,

c=&FA£+Aek_z+Bek+z, —v7<z <0, 2)
T

k., z
¢c=De *", z<—vr,

where v is the velocity, k,=—(v/2)+Vv2/4+T,
z=(x —vt/a), and 4, B, and D are constants. Imposing
continuity at z=0 and —v7, we find the nonlinear con-
sistency condition

k. A k
=__t pac ., kvt
‘r ky—k_ T (1—e ) @)

For 7=2, I'=0.5, and Ac /c;=300, a graph of v(p) is
given in Fig. 2. The saddle-node bifurcation at p~0.015
signifies the end of the (upper) stable plane pulse branch.
One can also calculate the excitation width, defined as the
length over which ¢ > ¢, as compared to the refractory
width vTy; also, this calculation can be easily extended to
deal with waves with finite wavelength. One should note,

FIG. 1. Spiral in box of size 100 with no flux boundary con-
ditions. Black boxes have cells and boxes with black borders
have ¢ > cy.
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FIG. 2. Velocity vs density as predicted by signaling mean-
field theory.

however, that propagation from an excitation center dur-
ing a typical simulation usually requires a value of p
higher than the estimate given by the plane-wave
analysis. This is due both to curvature effects (retarding
the wave propagation) and also to the fact that fluctua-
tions are not negligible at densities of several percent.

The second stage of our model endows each bion with
a new sensor and a motion rule. To wit, the gradients of
cAMP in the £X and *§ directions are computed for
each bion in state 1 and compared to a motion threshold
cr/a. If any directional gradient is above threshold, the
bion tries to move one lattice spacing either in that direc-
tion. It will not move onto a site already occupied [12]
and will continue attempting to move either until it
succeeds or until it progresses back to state 2. A bion can
move only once in each direction per chemical signal. If
we compare our rule to the fact that individual amoeba
typically move one cell diameter ( ~10 um) per pulse, we
can roughly associate @ ~ 10 um. Then if we assume that
our tz of 20 reflects an actual refractory time of about
200 sec, we get a time unit of 10 sec and a wave speed (at
p=0.2) of 5 um/sec. This is well within the range of ob-
served velocities.

In Fig. 3 we present a series of three snapshots of the
bion configuration at times 0, 100, and 200; the signaling
was due to a central pacemaker operating with a signal
interval At=30 and with ¢;=2c;. Note the dramatic
rearrangement of the density from a uniform pattern to a
highly ramified network. The aggregation on this time
scale has produced a set of dense streams along which the
bions move in (almost) single file. The transition from
chemical wave patterns with uniform azimuthal density
to network behavior is a familiar feature of experimental
studies. The azimuthal clumping is due to an instability
of the combined signaling-chemotaxis system [13] which
does not get restabilized until the local density reaches
O(1). It is hence difficult to imagine a continuum treat-
ment of the streaming pattern which is so naturally pro-
duced by our cooperative bion dynamics.

One simple aspect of our streaming pattern is the
focusing of the chemical wave along the stream with a
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concomitant speed up of the wave motion. To under-
stand this, we can crudely think of the stream as a con-
stant density p source of width Na; a typical stream is
fairly dense and rather narrow, say p=0.5, N=2. We
can modify the previous calculation by using a square

FIG. 3. L=400 simulation with central pacemaker. Only the
cells are depicted. (a)-(c) correspond to =0, 100, 200.
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wave source in the transverse direction and Fourier
decomposing everything in y. This leads to the approxi-
mate solution

iy A4 k. Ac
C( S ): gy =4 — —
% fe 21 kK, —k_ T(T+q?
Xp(gle (1= =" )

(for z>0), where kK, =(—v/2)+V (v2/4)+ T +q?% Here,
p(q) is the Fourier transform of the square wave p=p for
N/2=<y=<N/2 and O otherwise. (There are similar ex-
pressions for z<0). The system is closed by demanding
that ¢(y =z =0)=c,, where we have used the approxi-
mation that ¢ varies slowly over the width Na of the
stream. For the typical values given above, this leads to
about a factor of 2 increase in wave speed; this is mostly
due to the increased bion density in the stream, i.e., the
two dimensionality seems not to affect the speed to a
large extent. This speed up is in qualitative accord with
direct simulation results.

One interesting experimental observation [14] concerns
the existence of a ring of bions surrounding a low-density
hole; this structure occurs when the chemical wave
occurs as a spiral and is presumably due to the low
cAMP concentration at the spiral core repelling bions
from the center. We have performed a simulation where
we established a rotating spiral wave and then switched
on the chemotaxis. The resultant pattern after t=200 is
shown in Fig. 4 and clearly exhibits both the small cen-
tral ring and the expected bending of the streams.

To summarize, we have introduced a flexible simula-
tional approach to early stage aggregation pattern in Dic-
tyostelium. There is much work to be done in exploring
this model’s parameters, analyzing the resultant patterns
(perhaps by using methods from the study of river net-
works [15]), and understanding the model behavior on an
analytic basis. More crucially, there is much work to be
done in using this model to see how much of the vast
literature of detailed experimental measurements can be

FIG. 4. Same as Fig. 3, except that the central pacemaker
has been replaced by a self-sustaining spiral.
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explained with only the simplest dynamics used here and
what modifications might be necessary for more quantita-
tive comparisons. (For example, it is known [16] that the
decay rate due to phosphodiesterase degradation is not
constant but is instead coupled to the basic signaling sys-
tem). A much longer term goal would be to incorporate
more sophisticated cell-cell interactions into the coopera-

tive bion simulation so as to enable us to proceed to later

stages in the aggregation process such as slug formation
and migration.

We acknowledge useful conversations with W. Loomis,
W. Reynolds, and M. Marder.
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